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Abstract 

 

Most methods for structure-function analysis in medical images usually are based on voxel-wise statistical 

tests performed on registered Magnetic Resonance (MR) images across subjects. A major drawback of such 

methods is the inability to accurately locate regions that manifest nonlinear associations with clinical variables. In 

this paper we propose Bayesian Morphological Analysis (BMA) methods, based on a Bayesian-network 

representation, for the analysis of MR brain images. First, we describe how Bayesian networks can represent 

probabilistic associations among voxels and clinical (functional) variables. Second, we present a model-selection 

framework, which generates a Bayesian network that captures structure-function relationships from MR brain 

images and functional variables. We demonstrate our methods in the context of determining associations between 

regional brain atrophy (as demonstrated on MR images of the brain), and functional deficits. We employ two data 

sets for this evaluation: the first contains MR images of 11 subjects, where associations between regional atrophy 

and a functional deficit are almost linear; the second data set contains MR images of the ventricles of 84 subjects, 

where the structure-function association is nonlinear. Our methods successfully identify voxel-wise morphological 

changes that are associated with functional deficits in both data sets, whereas standard statistical analysis (i. e., 

t-test and paired t-test) finds only some of these changes in the linear-association case, and fails in the 

nonlinear-association case. 



3 
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morphology-function analysis, atrophy detection, computational anatomy 

 

1. Introduction 

 

Voxel- and deformation-based morphometry have been increasingly used to identify morphological 

abnormalities, such as atrophy, without the need to define a priori specific regions of interest. Many different 

approaches [1-2, 9-17, 21, 32-35] have been proposed for generating statistical maps that identify groups of voxels 

that display differences in morphology, or voxels for which significant correlations exist among morphological 

and clinical measurements. Morphological measurements can be computed from the deformation field used to 

spatially normalize subjects into a stereotaxic space [13, 17, 32-33], from residual variability in the spatial 

distribution of gray and white matter after spatial normalization [1, 16], or from tissue-density maps obtained after 

mass-preserving spatial normalization [10,12].   

For the purpose of morphology-function analysis, particularly voxel-wise morphometry, one of the first steps 

is warping MR images into a normalized space (i. e., registration), to ensure that voxel attributes across subjects 

can be compared. A widely used brain-image registration technique is the smooth parametric transformation [1, 

14-15, 35], which is provided in the SPM99 software package (http://www.fil.ion.ucl.ac.uk/spm/spm99.html). Our 

group has previously developed another method referred to as Spatial Transformation Algorithm for Registration 

(STAR) [10, 37], which utilizes a high dimensional elastic transformation. Coupled with the high-dimensional 

elastic transformation is a procedure that preserves information about the volumes of different anatomical 

structures, by constructing tissue-density maps, in which relatively higher density at a particular structure implies 

that this structure has a relatively higher volume prior to spatial normalization.  This procedure is a key component 

of our approach, since spatial normalization changes the anatomy of individual subjects, by making each subject’s 

anatomy similar to that of a template. Therefore, having a mechanism that preserves volumetric information during 
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spatial normalization is critical.   

Regardless of the type of morphological variables being considered, e.g. voxels or regions, most existing 

morphology-function analysis methods rely on voxel-wise linear statistics, such as t-tests (TT), paired t-tests (PT), 

and ANOVAs. Such statistics compare only the means and variances of variables among different groups; 

therefore, methods based on these statistics may not be able to detect nonlinear morphology-function associations. 

Second, even for linear associations, these methods usually require a predefined confidence interval, or p-value 

threshold, to generate regions of interest (ROIs). Third, these statistical tests generally do not directly describe the 

relationships among the generated ROIs. Other methods, such as principal-component analysis and 

partial-least-square analysis [26], can be expected to capture some image-behavior relationships. However, few of 

these methods can bring together many conditional probabilities of these variables to give a statistical conclusion. 

In particular, we distinguish between linear associations among continuous variables, which can be evaluated 

using methods based on the general linear model (GLM), such as ANOVA or linear regression, and nonlinear 

associations among continuous or categorical variables, which may not be captured by a GLM.  

In this paper we use Bayesian networks (BNs) [19, 22, 25] to represent the probabilistic associations between 

MR image voxels and clinical variables. A BN is a Directed Acyclic Graph (DAG) model describing the 

probabilistic relationships among variables; each node represents a variable, and directed edges coming into a 

child node indicate that there is a corresponding conditional-probability distribution for the child, given the joint 

states of its parents. Each node without parents is associated with a prior probability distribution. In this framework, 

voxel-morphology variables (e. g., dilated, contracted) and clinical variables are nodes, and morphology-function 

analysis is equivalent to the generation of a Bayesian network from MR image data and clinical information for 

each subject. The Bayesian network techniques needed in this paper are formalized below in Section 1.A.  

We evaluate our methods by trying to detect cerebral atrophy in structural MR brain images, in the setting of 

changes in clinical variables. Cerebral atrophy [20] is a degenerative process that generally occurs after 55 years of 

age, although it may occur much more rapidly in certain diseases. In this process, the brain loses mass and volume, 

causing the cerebral ventricles to dilate. Many cortical, subcortical, and mixed cortical-subcortical 

encephalopathies, such as Alzheimer’s disease and Parkinson’s disease, have atrophy as their primary structural 
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manifestation. This application is a typical example of morphology-function analysis, where significant 

associations between brain morphological changes and clinical variables, such as aphasia or apraxia, are of 

interest.  

This paper is arranged as follows. Section 1.A briefly introduces Bayesian networks. Section 2 describes an 

overview of our approach, describes a framework for finding the structure of a Bayesian network from image (i. e., 

voxel) and clinical data, and further presents two methods implemented within this framework for generating sets 

of equivalent voxels. Section 3 describes our performance metrics. Sections 4 and 5 illustrate experimental results 

on a linear-association data set of cerebral MR images, and on a nonlinear-association data set of ventricular MR 

images, respectively. After discussion in Section 6, we present our conclusions in Section 7. 

 

A. Bayesian Networks 

 

Suppose we have n nodes X={x1,…,xn}; a Bayesian network for X consists of a DAG structure S and a set of 

local distribution functions p(xi|πi,θS,S), where πi is xi's parent node set and θS is the parameter set of all conditional 

probabilities. The structure S encodes the independence statement that ∏
=

=
n

i
iixpXp

1

),,|(),|( SS SS θθ π ; that is, 

the structure of a Bayesian network defines a decomposition of a joint distribution into the product of 

conditional-probability distributions, based on the notion of conditional independence, which we elaborate below. 

Many model-selection algorithms (see [22-23, 38] for good reviews) have been proposed to construct Bayesian 

networks from data. Often these algorithms are based on assumptions similar to the following [8, 22-24, 31, 3]: 

1. Each variable is discrete, having a finite number of states. We use k
ix  and j

iπ  to denote the kth state of xi 

and the jth possible joint configuration of πi, respectively. We use ri and qi to denote the number of possible 

states of xi and the number of possible joint configurations of πi, respectively. 

2. Each local distribution function p(xi|πi,θS,S) consists of a set of distributions defined as the parameters  

),,|( SS
j

i
k
iijk xp π≡ ,         (1) 
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where for all i , j, k, 0>ijk  and 1
1

=∑ =
ir

k ijk . Denote the parameter set },,{ 1 iijrijij �= .  

3. The parameter sets θij are mutually independent, so that ∏∏
= =

=
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4. Each parameter set θij has a Dirichlet distribution, giving ∏
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where hyperparameters αijk > 0 for every i, j, k. 

5. The data set D is complete, that is, every variable is observed in every case of D. 

Under these assumptions, the parameters remain independent given D: 

∏∏
= =

=
n

i

q

j
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i

pp
1 1

),|(),|( SDSDS ,       (2) 

and the posterior distribution of each θij has the Dirichlet distribution 
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where ijkN is the number of cases in D in which k
ii xx =  and j

ii ππ = . ∑ =
= ir

k ijkij NN
1

 is the total number 

of cases in which iπ assumes the jth joint parent configuration.  

The marginal likelihood was first derived in [8, 24] as 
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k ijkij 1
αα . Since ijkα  is often chosen as 1, iij r=α  and  
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Among many Bayesian network learning methods, we have particular interest in K2 [8, 24] . K2 uses the 

metric eqn.(5) to compute the conditional probability of a candidate Bayesian-network structure S (i. e., the 

associations among the variables), given the data D. With uniform priors over possible network structures, the 
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Bayesian metric is proportional to the likelihood in eqn.(5). Because the number of possible network structures is 

exponential in the number of variables, it is impossible to completely evaluate all possible network structures to 

find the best one [24]. In fact, for the purpose of voxel-wise morphometry, there are hundreds of thousands of 

voxel variables, so it is impractical to directly apply the K2 algorithm to morphology-function analysis. As we 

describe later, we solve this problem by searching a specific subset of possible network structures; this subset is 

suitable for capturing associations among voxels and clinical variables, and for finding sets of equivalent voxel 

variables. 

A basic concept regarding Bayesian networks is d-separation, which is defined as follows [25]: two variables 

v and u in a Bayesian network are d-separated if, for all paths between v and u there is an intermediate variable w 

such that either the connection is serial or diverging and the state of w is known, or the connection is converging 

and neither w nor any of w’s child nodes have known states. This blocking of evidence transmission is reflected as 

conditional independence among variables. Variable u is conditionally independent of v given variable w if 

)|(),|( wupwvup = . In this case, knowledge of v will not alter the probability of u. If w is empty, we say that u 

and v are marginally independent. The conditional independence appears in Bayesian network paths of serial and 

diverging connections. In this paper we utilize d-separation to find candidate sets of equivalent variables. 

Latent-variable induction in Bayesian network models has been presented as a clustering method [4, 6-7]. In 

this paper we use latent-variable induction to generate sets of equivalent variables from the above-mentioned 

candidate sets. 

 

2. Bayesian Morphological Analysis 

 

In this section we propose a Bayesian Morphological Analysis (BMA) algorithm, which detects 

morphology-function associations between brain morphological variations and clinical variables. Like other 

morphometry methods, BMA requires a preprocessing stage for the images. BMA is based on the Bayesian metric 

of eqn.(5) and a heuristic model-selection method to generate a Bayesian network structure from the data. Next, 
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BMA produces sets of equivalent voxels based on Bayesian thresholding or Bayesian clustering. 

 

A. Image Data Preprocessing 

 

The purpose of data preprocessing is to generate the image portion of data D for the BMA algorithm. For 

purposes of illustration, most of our development will be presented in the context of finding associations between 

longitudinal brain atrophy and functional variable that might be associated with such atrophy. Suppose we have 

longitudinal MR images (at times t1 and t2) of a group of subjects (subject 1, 2, …), along with measurements of a 

categorical clinical variable, which could reflect performance in a neuropsychological battery of tests. The three 

major image-processing steps in the BMA framework, i.e. registration, subtraction and thresholding, are shown in 

Fig.1:   

 

Fig.1 Three major image preprocessing steps, i.e. registration, subtraction and thresholding (binarization) 

 

(1) Registration: In the registration step, brain images of different sizes and shapes are warped to a 

stereotaxic canonical space. In this paper we choose STAR [10, 21], which is a high-dimensional 

elastic-registration method. Unavoidably, registration introduces a complication, namely that it changes 

the morphology of an individual’s brain. Therefore, it would be pointless to examine the morphology of 

spatially normalized brain images in a structure-function correlative analysis.  In order to overcome this 

problem, we use an approach referred to as Regional Analysis of Volumes Embedded in Stereotaxic 

Space (RAVENS), which is described in detail in [12,10,21]. In this approach, 3D density maps for each 

tissue class, such as gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), are generated 

separately. For example, assume that an individual brain has, due to atrophy, larger ventricles than those 

in the canonical-space template. Then the density of the corresponding CSF map will be high after spatial 

normalization, reflecting the fact that a relatively larger volume of CSF is forced to fit in a relatively 

smaller space. More generally, RAVENS maps reflect the regional volumetric structure of the brain of 
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each subject, with the tissue density of any structure being proportional to the actual volume of the 

structure in an individual brain, prior to spatial normalization. Since these maps are registered and reside 

in the same canonical space, they can be overlaid and analyzed on a voxel-wise basis.  

(2) Subtraction: We subtract the pair-wise RAVENS maps to generate a difference image for each subject. 

Due to volume contraction, the atrophic regions of t2 images will, on average, have lower intensity than 

the corresponding regions in t1 images, since image intensity of the RAVENS maps reflects tissue density. 

As a result, the difference maps (t1 – t2) will generally have positive values in these regions, and negative 

values for regions that dilate over time, such as ventricles in the setting of progressive cerebral atrophy.  

(3) Thresholding: Our current method applies only to categorical variables. Therefore, we binarize the 

longitudinal atrophy maps by thresholding them at zero. That is, any voxel value larger than 0 is set as 

state 1 (for "volume contraction") otherwise is set as state 0 (for "no volume contraction"). In regions of 

atrophy, binary-map voxels will in general assume state 1. At all other locations the binary maps would 

approximately have equal possibility to assume state 1 or state 0. The binary maps are used as the image 

data input for BMA.  

In a binary map, we denote the entire brain as Rb and the (possibly discontiguous) region of atrophy as Ra. It 

follows that the non-atrophic brain region is 

aba RRR \= . 

 

B. Generating a Bayesian Network Structure From Data 

 

In the BMA framework, we employ the following terms and notations: 

• Pair-wise longitudinal MR images: a pair of MR images of the same subject obtained at different times, t1 

and t2. 

• Binary variable: a two-state variable; we label these states as 0 and 1.  

• Voxel Variable (VV) v: a binary variable defined for each image voxel. A set of voxel variables is called a 
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VV-set and denoted as V. 

• Functional Variable (FV) f: a discrete (not necessarily binary) clinical variable. For example, it could 

indicate whether a subject has a functional deficit (1) or not (0).  

• Data D: a set of N binary maps (each has size d1×d2×d3 for the three spatial dimensions) and N values for 

the FV.  

• Association: a probabilistic association among a VV and an FV.  

• Associated Variable (AV): a VV that is associated with a FV. If a VV is not an AV, we label it as a 

non-associated Variable (NV). The set of non-associated variables is the NV-set. 

• Representative association Variable (RV) u: a VV that represents a group of AVs of similar associations, 

i.e., they have similar conditional distributions with respect to one or more FVs. The representative 

association variable set is called RV-set and denoted as U. 

• Equivalent-variable set (e-set): the variable set represented by an RV. An e-set can be imagined as a 

(possibly discontiguous) region within which morphological changes affect volume loss in a 

homogeneous way. 

• Candidate equivalent-variable set (c-set): the VV-set containing candidate equivalent VVs with respect to 

an RV. 

• Bayesian network structure S: a Bayesian network consists of RVs and the functional variable(s). S is 

constructed based on the given data D. 

In BMA, a Bayesian network S is constructed from D to achieve two goals: (1) identify all AVs from the 

complete VV-set V, and (2) classify all AVs into several subsets. AVs within a subset have similar conditional 

probability distributions with respect to a given FV, and AVs in different subsets have different conditional 

probability distributions with respect to a given FV. We accomplish both goals by finding the AVs, identifying RVs, 

and obtaining the corresponding e-set for each RV. Three major issues, i.e. the subset of possible Bayesian-network 

structures considered, the metric used to compare candidate network structures, and the search strategy, are next 

considered.  
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Fig.2 The general Bayesian-network structure for representing morphology-function associations 

 

We propose using the general network structure in Fig.2 to represent associations among VVs and a FV. With 

this structure we suppose each ui possesses an association with f, while each pair ui, uj (i,j=1,2,3… and i≠j) are 

independent (i. e., there is no edge between ui and uj). Each ui may represent a different kind of association between 

a VV and a FV. Hence this network structure is able to capture complex associations among these variables. 

Typically, for each ui, its e-set contains more than one VV, since we expect voxels in the same group to have similar 

associations with a given FV. 

We use the Bayesian metric [8, 24] M(S), which is the conditional probability of network structure S given the 

data D, to evaluate candidate Bayesian-network structures. M(S) has the following form: 

)(

)()(
)|()(

D
SS|D

DSS
p

pp
pM == , 

where p(D|S) is computed using eqn.(5). 

A larger Bayesian metric value indicates a larger probability that the corresponding Bayesian-network 

structure could have generated the observed data. Since we have no a priori preference regarding network 

structures, we assume the prior p(S) is uniform, as in [8, 24]. Furthermore, because the prior probability of 

observing data D is a constant, M(S) is proportional to the likelihood function, i.e. )|()( SDS pM ∝ , which takes 

the form of eqn.(5) for discrete variables of complete data D. 

For computational purposes, we redefine the metric M as the logarithm of eqn.(5): 
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C. Model Selection 

 

Here we assume that it is unnecessary to find all associations among VVs and an FV in the network structure 

(see discussion at the end of this subsection). Instead, we wish to determine whether there is an association 

between an individual vi and f, and whether vi is conditionally independent of that f given the existing RVs. We 

propose the method shown in Fig.3 to generate the set of all RVs, and their corresponding e-sets.   

 

Fig.3 Flowchart of the algorithm for RV-set generation. 

 

The procedure in Fig.3 can be understood step by step as follows. Our algorithm first compares pairs of 

Bayesian-network structures with and without an edge from the current vi to f (shown as Step 1 in Fig.3 and plots 

(a)(b) in Fig.4, where the five structures are denoted as Sa, Sb, Sc, Sd, Se, respectively). In particular, to find the 

variable that has the strongest association with f, the algorithm compares each pair of Bayesian networks shown in 

Fig.4 (a) and (b) over all vi by computing the difference metric 

)()(),( baba MMdM SSSS −=         (7) 

Since dM is a function of vi, we denote it as dMi for convenience (as used in Step 1 in Fig.3). Thus, we obtain 

the maximum dM* and the corresponding voxel v*,  

idMdM max* =           (8) 

i
v

dMv
i

maxarg* = .         (9) 

If there are several variables whose difference metric values are equal, we choose the variable with the 

maximum M(vi) as v*. If there are still several variables with the same metric value, we arbitrarily choose one of 

them as v*. 

If dM* is not larger than 0, the data do not favor an edge from any VV to f, hence our algorithm stops (this 

condition is equivalent to the judgment subsequent to Step 1 in Fig.3). Otherwise we denote the variable v* as u1.  

Then we exclude u1 from the current VV-set and put all variables for which dMi ≤ 0 in the current NV-set. 
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However we do not exclude these NV-set variables from VV-set because they might have higher order associations 

with f, although in the current order they are not linearly associated with f.   

Each of the variables that render dMi > 0 will have an edge to f. Hence we calculate the difference metrics of 

Fig.4(c) and (d) (i.e. compare models Sc and Sd) for all VVs in the current VV-set, 

)()(),( dcdc MMdM SSSS −=         (10) 

If a variable vi makes eqn.(10) less than or equal to 0, the data favor no edge conditioned on the existence of u1. 

In that case, from the definition of conditional independence, we know that vi and f are conditionally independent 

given u1. The relationship between conditional independence and d-separation implies that the data favor the 

model Se in Fig.4 (e) rather than Sc in Fig.4 (c). Therefore, it is reasonable to place the current NV-set as the c-set of 

u1, and to assert that there probably are strong associations between these NV-set variables and u1. The e-set of u1 

will be found in the c-set using the methods in next subsections. Intuitively speaking, the method to obtain the c-set 

is analogous to partial correlation [39], which is used to determine whether there is any linear relationship between 

two variables given another (or another group of) controlling variable(s). 

The variables for which eqn.(10) is larger than 0 add more information even given the existence of u1. Hence 

we reuse eqns.(8) and (9) to find the v* that has the maximum difference metric of eqn.(10). Denote this v* as u2. 

Note that u2 is typically independent of u1, although this is not necessarily true.  

We then exclude u2 and the e-set of u1 from the current VV-set (Step 3 in Fig.3). If the VV-set is non-empty, 

the algorithm continues, to generate the e-set of u2, and the third representative variable u3. This procedure is 

repeated until no variable remains in VV-set (the judgment subsequent to Step 3 in Fig.3). As shown in Fig.3, these 

iterations will generate a set of representative variables U={ui} and their corresponding e-sets. 

 

Fig.4 Alternative structure-function Bayesian-network models 

 

We assume above that we need not compare all possible Bayesian networks to generate an adequate network 

structure. Regardless of whether this assumption is correct, the model-selection algorithm will produce the correct 
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u1 for model Sa. However, this assumption is probably incorrect for networks with more than one RV. For example, 

for structure Sc it is not impossible that the combination of u2 and another AV could yield a larger metric value than 

the combination of RVs u1 and u2. One method to decrease the likelihood of such a problem is: first, obtain u2 with 

the heuristic method in Fig.3, then replace u1 in models Sc and Sd with other currently available AVs, to ensure that 

the combination of u1 and u2 will produce the largest metric value. We apply the same approach for structures with 

more nodes.  

Another challenge is that the structure might not be sufficiently complex to represent associations among RVs 

and an FV. For example, it is not impossible that an additional edge from u2 to u1 in structure Sc could lead to a 

larger metric value. It appears that the only way to overcome this problem is to carry out an exhaustive search for 

all possible associations, which has exponential computational complexity in the number of variables. Nonetheless, 

because we need only to identify associations between AVs and the FV, the BMA algorithm can succeed even if we 

do not compare associations among RVs.  

 

D. Bayesian Thresholding  

 

In this paper we employ the concept of "probabilistic equivalence": two variables v and u are probabilistically 

equivalent if v and u have the same number of states, and 1)|()|( ≅≅ vupuvp  for each state.  

The equivalent variables ui are only searched for in the corresponding c-set (in our implementation, the c-set 

is set to the union of the c-set and ui). An alternative method is to search all variables in the current VV-set, rather 

than only the c-set. However, we prefer searching the c-set, because a variable that would add more information 

would generally have a different association with ui and could therefore be excluded from consideration.  

A straightforward method to find the e-set of ui is Bayesian thresholding (BT), which determines whether the 

association between each c-set variable and ui is strong. In BT, two "equivalent" binary variables u and v are 

required to satisfy the following conditions: 
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,

     (11) 

where pBT (<1) is a predefined threshold. An implementation of BT is shown in Fig.5, where the edges are 

indicated by the horizontal edge in Fig.4(e). Clearly, the threshold pBT should be larger than 0.5, otherwise there 

could be no edges from any of the c-set variables to ui.  

The structure in Fig.5 does not necessarily mean that there is no association among vj, vj+1, …. On the contrary, 

typically there would be a fully connected Bayesian network for these equivalent variables. Therefore we 

emphasize that the network in Fig.5 is very different from the structure in Fig.2, where each ui is supposed to be 

independent, or at least associated with a given FV in a different manner than the other uj, and therefore will add 

more information to the existing structure. 

 

Fig.5 The general Bayesian-network structure for the BT method 

 

E. Bayesian Clustering 

 

The major drawback of the BT method (and other threshold-based methods) is its reliance on a predefined 

threshold. We therefore developed another BMA algorithm, based on latent-variable induction in Bayesian 

networks, to cluster the c-set and obtain the e-set. In this approach, we transpose D, i. e., we consider a 

pseudo-variable set C, where each ci is the variable representing all ith cases of every variable in the c-set, and at 

the same time, we regard the original variables as the pseudo-cases. The pseudo-data are denoted as DT. Fig.6 

shows this scheme, where L is an rL-state latent variable with edges to each of the pseudo-variables ci, i=1,2…,N. 

Each state of L corresponds to a set of pseudo-cases. The joint distribution of ci is given in the following 

multinomial form: 
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The clustering method is to assume a number of states for the latent variable L, then estimate the unobservable 

cases of L. An approximation method [6], based on the Laplace-approximation and Bayesian information criterion, 

minimum description length, or Cheeseman-Stutz approximation, can be used. An alternative method is the 

Monte-Carlo approximation, which will produce a more accurate result if given enough time [6]. In this paper we 

consider one specific Monte-Carlo method, the Gibbs sampler [18], because we want the clustering results to be 

precise, while reducing the computational burden. 

 

Fig.6 The latent-variable Bayesian-network structure for the BC method 

 

In the Gibbs-sampler approximation, we first randomly initialize the unobservable pseudo-cases of L (with 

the assumed number of states rL). Then we sequentially un-assign every latent pseudo-case and calculate its 

probability for each possible state, given the other pseudo-cases: 
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where DT\Lj denotes the data set DT with the jth pseudo-case of L, i.e. Lj, removed; and the sum in the denominator 

runs over all possible states of Lj. Since both the numerator and denominator are probabilities that are computed 

based on an assumption of complete data, they can be computed using eqn.(5). Then, the results of eqn.(12) are 

used to sample a new pseudo-case. Next, all unobserved data can be reassigned to produce the new data DT. We 

iterate this procedure until the distribution of model parameters in Fig.6, which takes the form of eqn.(2), 

converges. We can rewrite such an indexing function as: 
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To calculate eqn.(13), we use eqns.(3) and (1). After the indexing function converges, typically most of the 

unobserved cases will not change states. Then we can find the pseudo-cases for which the real variables assume the 

same state with the RV ui. These same-label variables are regarded as equivalent variables. 
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We call this clustering method Bayesian Clustering (BC); it has also been referred to as the candidate method 

[5-6, 30]. In [6], the authors were interested primarily in the indexing function value in eqn.(13) as opposed to the 

clustering results; this value is used only to decide when the algorithm should stop. In the setting of 

morphology-function analysis, we are primarily concerned about whether the clustering results are meaningful. 

Further, unlike [6], we neither select any particular fixed parameters nor use the normalized parameters.  

The computational bottleneck of BC is eqn.(12). Fortunately, we can simplify it as the relative value of 

eqn.(5), which removes a lot of unnecessary computation of Bayesian metrics over the whole Bayesian network in 

Fig.6. In our implementation, this optimization makes the Monte-Carlo method very fast and is no longer a 

computational obstacle, especially when there are a large number of variables (pseudo-cases) in a c-set. 

The parameter rL, i.e. the number of clusters, must be set; however, it is not difficult to choose this parameter. 

First, when rL is larger than a critical value rLr, which is the real number of clusters, the indexing function, eqn.(13), 

will typically converge to a value that is independent of rL. Second, when rL > rLr, typically there are only rLr 

different labels in the converged pseudo-cases of the latent variable. Therefore, we can simply set rL to a large 

value, say, 6 or 7, even when we only expect to find 2 or 3 clusters. The only drawback of beginning with a large rL 

is greater computational complexity, which is however not critical in practice.  

 

3. Performance Metrics 

 

Let us denote the detection results as Rr; this set is the union of the RV-set and all corresponding e-sets. To 

measure the performance of the algorithm, it is natural to define the Signal-Detection Rate (SDR) and 

Signal-Noise Ratio (SNR) as follows, 
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where Ω(.) is the operator to calculate a region’s volume, i. e., the number of voxels in that region. SDR measures 
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the fraction of detected ground-truth signal (and is therefore in the range [0, 1]), and SNR indicates the degree of 

false-positive detection. When the ground truth Ra is completely covered by Rb, eqn.(15) can also be written as 
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We expect that SNR may be larger than 1. Nonetheless, when the ground-truth region Ra is not in accordance 

with Rb, it is possible that the algorithm might detect association regions not belonging to Ra. Hence both SDR and 

SNR can only be used as references, and alternatively a better way to evaluate performance is to compare the input 

data (Rb) and the detection result (Rr) directly. 

Although ideally, morphology-function analysis would maximize SDR and SNR, if the data D contain 

redundant variables (for example two variables, one in Ra and the other in aR , that have the same state for each 

case), there is no way to distinguish them without spatial information. We can expect SNR>1 if Ra is in 

concordance with Rb (i. e., Ra is very accurate), in which case it is possible to derive the theoretical SDR and SNR 

based on Bayes’ theorem. Furthermore, we can claim that the morphology-function analysis algorithm performs 

well if both SDR and SNR are close to their corresponding theoretically maximal values. However, in this paper 

we do not have an accurate Ra for our data sets (although it is still very interesting to compare Ra with Rr), hence we 

omit the derivation of the theoretical SDR and SNR. 

In addition, we can perform Receiver Operating Characteristic (ROC) curve analysis [27-28], which involves 

computing the True Positive Rate (TPR) and the False Positive Rate (FPR) while varying algorithm parameters, 

such as the BT threshold. TPR indicates the sensitivity of the method, and the False Negative Rate (FNR=1−FPR) 

indicates the specificity of the method. We can write TPR and FPR in terms of SDR and SNR: 
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Thus, the ROC curve analysis is equivalent to the SDR-SNR analysis. Thus we only present the ROC curves 

in the following experimental sections.  
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4. Experiments for Linear Detection 

 

This Section addresses the problem of detection of a linear morphology-function association: a subject has a 

functional deficit whenever there is significant atrophy in the corresponding binary-map regions.  

 

A. Data  

 

For this experiment we used a set of simulated cerebral-atrophy MR images based on T1-weighted 

gradient-echo SPGR images of 11 normal elderly subjects (average age is 70.1 years, standard deviation 5.9). We 

selected two gyri, the right precentral gyrus (PCG) and the left superior temporal gyrus (STG), in all subjects (both 

gyri were manually defined using the DISPLAY software package distributed by the Brain Imaging Center, 

Montreal Neurological Institute). We then introduced a 30% uniform contraction into the labeled gyri, and created 

11 additional images with localized atrophy in these gyri. We term the labeled region of each subject as the 

atrophy-mask, or "a-mask". For each subject, we call the image without atrophy the t1 image and the image with 

simulated atrophy the t2 image. These simulated data are similar to those expected in a longitudinal study, because 

each pair of images (t1 and t2) belongs to the same subject, the only difference between the two being localized 

atrophy. These 22 images, as well as the corresponding a-masks, have also been used in [12]. 

We registered these 22 3D images with the STAR algorithm, generating RAVENS maps. The size of each 

RAVENS map is 256×256×129. The voxel resolution for each spatial dimension is 0.9375mm. As explained in 

Section 2.A, the 3D elastic warping transform in STAR algorithm preserves the brain mass of each image; 

therefore, the atrophic regions in the t2 images have smaller mean intensity than those for the t1 images. Due to the 

physical limitation of our computer facility, we down-sampled each image by a factor of 2, and cropped it with the 

largest brain-region bounding box across all images. Each of the smaller images (size=74×91×65) contains 

Ω(Rb)=231091 brain voxels. For each subject, we repeated the warping, down-sampling and cropping procedure 
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(with the same parameters) on the corresponding a-mask and obtained 11 RAVENS maps of a-masks (we still call 

them a-masks for convenience). These a-masks are slightly different from each other; therefore, we superimposed 

these a-masks and binarized with the threshold 5.5 (=11/2) to generate a binary "ground truth" atrophy location Ra.  

To correct registration errors, we applied an isotropic Gaussian-smoothing kernel  to these images, as is 

customary in voxel-based morphometry [1, 14-15, 35]. We applied the same smoothing kernel to Ra, in order to 

generate a rational ground truth for the results obtained from a statistical analysis applied to smoothed images. 

Since the optimal diameter, in the sense of maximal atrophy detection, found for this data set is 9mm [12], we only 

show the experimental results using a 9mm-diameter smoothing kernel below. In this context, Ω(non-smoothed 

Ra)=3888 < Ω(smoothed Ra)=10670). Of note, Ra is the thresholded mean value of the original a-masks, however 

some brain regions other than Ra will also have significant intensity differences. Hence, for this data set, neither the 

non-smoothed Ra nor the smoothed Ra is completely accurate, although they do indicate the locations of greatest 

morphological change. 

We then applied preprocessing Steps 2 and 3 of Fig.1 (i.e. subtraction and binarization) to the smoothed 

images to generate 11 binary maps for which the corresponding FV indicate a functional deficit. Notably the null 

hypothesis in PT (i.e. paired t-test) method indicates that when there is no atrophy, the subject has no functional 

deficit. Hence we created another 11 "normal" (i.e., no atrophy in t2 images) binary maps where all cases of VVs 

and FV are 0. Besides this primary theoretical consideration, another practical reason for these zero maps is due to 

the Gaussian smoothing. Because the Gaussian-smoothing operation includes a large region around each voxel 

(i.e., 9mm kernel diameter relative to 0.9375mm voxel size), the value of a smoothed voxel is calculated based on 

the values of hundreds of neighboring voxels. If there is no atrophy in t2 images, we would expect that after 

smoothing, a given voxel’s intensity in the t1 and t2 images will be approximately equivalent, especially in the 

practical implementation when both input and output images of the smoothing operation are 8-bit and the 

smoothing itself is computed with floating-point numbers (this truncation error in data-type conversion is common 

in many available packages, such as SPM99). Therefore, after subtraction and binarization, most VV values are 0.  

The entire data set, with 22 simulated binary maps, consisting of 11 abnormal cases for which FV=1 and 11 

normal cases for which FV=0, were used as the input to the BMA algorithm. 
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B. Results 

 

We compared our Bayesian methods with the standard PT method (provided in SPM99). For simplicity we 

call our methods BT and BC, although they have the common heuristic algorithm in Fig.3. 

 

Fig.7 Detection results of PT, BT, and BC versus the input data for the linear morphology-function associations. 

(a)(b) Intensity plots of the average binary maps at the labeled two gyri, where atrophy is applied. Pixel intensity is 

proportional to the summation of binary maps, where 1 stands for volume loss and 0 for no volume loss. (c) The 

ground truth for the STG. The colored region is the smoothed Ra, which is overlaid on a subject’s image (gray) for 

better visualization. (d)(e)(f) Detection results for the three methods evaluated. 

 

In Fig.7(a) and (b), the intensity plots of the average binary maps at the simulated atrophy locations are 

shown. Comparing the smoothed Ra (for STG) in Fig.7(c) with Fig.7(b), we see that there are false-positive regions 

outside Ra and false-negative regions inside Ra.  

In Fig.7(c)-(f), we show atrophy-detection results versus the ground truth Ra indicated by the STG 

atrophy-FV deficit associations. The parameters used here are pBT=0.8 for BT, initial number of clusters rL=7 and 

the maximum number of iterations = 100 for BC (Note that in each step of BC, although rL was initialized to 7, 

only the voxels with the same label as the current RV were returned by the algorithm.), and a significance threshold 

tPT=5 for the PT t-statistic map. The colored region in Fig.7 (c) is the Ra for STG atrophy, below which the 

grayscale image corresponds to a randomly chosen subject’s brain, as an anatomical reference. Comparing Fig.7 

(d), (e) and (f) with Fig.7(b), we see that both BT (Fig.7(e)) and BC (Fig.7(f)) correctly identify most atrophy 

voxels, while PT (Fig.7(d)) finds only a subset of Ra.  

As expected, the results of BT and BC overlap, except for a few noisy regions in BC. This noise exists partly 

because BC is based on Monte-Carlo iterations, so a few pseudo-cases of the latent variable may change states 

even when the maximum number of iterations has been reached. In addition, we have used a large pBT for BT. In 
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fact, BT and BC give almost identical results when pBT is lowered, for example, in Fig.8 (b) the results of BT at 

pBT=0.6 and BC at rL=7 are very similar. 

 

Fig.8 ROC curves of the three methods  

 

 In Fig.8 (a) and (c) we show ROC curves for both non-smoothed and smoothed Ra, respectively. Fig.8 (b) and 

(d) show the portions of the corresponding ROC curves in Fig.8 (a) and (c) for which we have restricted the 

analysis to reasonable parameters of each method, i. e., parameter values that would be used in practice. As seen in 

Fig.8 (b) and (d), for comparable FPRs, BT is always more sensitive than PT. Furthermore, although BC always 

has a higher FPR than BT and PT, BC detects more atrophy locations. When the pBT is lowered to 0.6, BT produces 

very similar results to those of BC. However, for BT we do not know the optimal threshold beforehand, whereas 

BC does not depend on a user-defined threshold. Our current implementation of BC requires a value for rL, 

however we could automate this choice, because when rL is large enough (for example, >4 for these experiments), 

the clustered results are similar in each trial. The difference in the FPR for BC for different rL is mainly due to a 

too-small rL, which forces incorrect clustering, whereas large rL distributes any errors across clusters. As for PT, as 

the threshold tPT is changed to yield higher TPRs in Fig.8 (b) and (d), the corresponding parameter tPT is actually 

unacceptable (tPT=3 is too small to reflect significant variations in the t-map) for realistic applications. However, 

when tPT is set to values typically used in practice (e. g., 10), only a small fraction of atrophy voxels (<10%) are 

detected. Thus, cases in which PT has low FPR correspond to low TPR as well. For example, when tPT=15, the 

corresponding TPR is 0.0034, which means that only about 0.0034×Ω(smoothed Ra)≈36 voxels are detected. In 

addition, PT shares the BT’s drawback of requiring a user-set threshold.  

 

5. Experiments for Nonlinear Detection 

 

In this section we further evaluate these methods using a more difficult problem, in which only atrophy in a 
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nonlinear combination of specific locations leads to a functional deficit. This structure-function relationship is one 

that cannot be captured by standard linear statistical tests, and it is used to demonstrate the main strength of our 

approach. 

 

A. Data  

 

For this study, we used 168 T1-weighted SPGR images of 84 normal elderly subjects. These subjects have 

different degrees of atrophy. For each subject, there are two images that were scanned with a 5-year interval 

between time t1 and time t2. We manually segmented these images and obtained a ventricle mask for each image. 

For the sake of experiment, we termed the smaller ventricle image of a subject as the t1 ventricle and the larger 

ventricle image as the t2 ventricle. That is, we first arranged the data to make all t2 ventricles larger than the 

corresponding t1 ventricles. Then we normalized these ventricle images using the STAR algorithm, and obtained 

two RAVENS maps for each subject. Because atrophy manifested as ventricular enlargement, the t2 RAVENS 

maps have higher values than the respective t1 maps. Then left and right ventricles were defined via a vertical line 

placed in the spatially normalized RAVENS maps. 

Our aim in this experiment was to evaluate the performance of the BC, BT, and TT (i.e. standard t-test) 

methods on the following nonlinear detection problem: the functional deficit has associations with both (i.e. left 

and right) enlarged lateral ventricles, however only the left lateral ventricle enlargement is linearly associated with 

the functional deficit. The right lateral ventricle enlargement has no linear association with the functional deficit 

FV, i.e. p(enlarged right lateral ventricle | FV=1)=0.5 and p(non-enlarged right lateral ventricle | FV=0)=0.5. Since 

we already made all t2 ventricular RAVENS maps have higher values than the corresponding t1 maps, we further 

constructed 8 groups of images that displayed different patterns of atrophy, as explained next:  
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Table 1. Scheme to arrange the nonlinear association data set, where atrophy on both lateral ventricles is associated 

with the functional deficit, however only the left lateral ventricular atrophy exhibits a linear association. 

Pattern: Enlarged  

Lateral Ventricle? Group 

Number 

of  

Subjects 

Pattern 

Name 
Left (L) Right (R) 

Functional 

Deficit? 

Percent of Abnormal  

Subjects in This Pattern 
Other Statistics 

1 13 0 

2 16 
P00 0 0 

1 

p(FV=1 | P00) = 

16/(13+16) = 55.17% 

3 8 0 

4 5 
P10 1 0 

1 

p(FV=1 | P10) = 

5/(8+5) = 38.46% 

5 19 0 

6 5 
P01 0 1 

1 

p(FV=1 | P01) = 

5/(19+5) = 20.83% 

7 2 0 

8 16 
P11 1 1 

1 

p(FV=1 | P11) = 

16/(2+16) = 88.89% 

p(FV=1) = 0.5 

p(L=1 | FV=1) = 0.5 

p(L=1 | FV=0) = 0.19 

p(R=1 | FV=1) = 0.5 

p(R=1 | FV=0) = 0.5 

p(FV=1 | L=1) = 0.68 

p(FV=1 | L=0) = 0.40 

p(FV=1 | R=1) = 0.5 

p(FV=1 | R=0) = 0.5 

 

(1) We generated four ventricular atrophy patterns P00, P10, P01, and P11, which stand for no atrophy on 

both lateral ventricles, only left lateral ventricular atrophy, only right lateral ventricular atrophy, and both 

lateral ventricular atrophy, respectively. These patterns are shown in the third to fifth columns of Table 1. 

For simplicity, here (as in Table 1) we used shorthand L for left lateral ventricle, R for right lateral 

ventricle, 1 for atrophic lateral ventricle and 0 for non-atrophic lateral ventricle. Since we refer to 

"atrophy" as that the t2 ventricular RAVENS map has higher value than the corresponding t1 ventricular 

RAVENS map, to create the non-atrophic lateral ventricle, we swapped the t1 and t2 lateral ventricular 

RAVENS maps to make the t1 map have higher value.  

(2) We randomly divided the 84 subjects into 8 groups, each having the number of subjects and the pattern of 

enlarged lateral ventricles according to Table 1. For example the group 3 has 8 subjects, who have pattern 

P10, i.e. enlarged left lateral ventricle (i.e. L=1) and non-enlarged right lateral ventricle (i.e. R=0).  

(3) For each group of subjects, we swapped the t1 and t2 ventricular RAVENS maps according to the patterns 

of enlarged ventricle listed in the fourth and fifth columns of Table 1 and set the respective functional 
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deficit FV states according to the sixth column of Table 1. When the lateral ventricle enlargement takes 

state 0 (’no’), a swap was needed. When the lateral ventricle enlargement takes state 1 (’yes’), no swap was 

performed. For example, for both lateral ventricles in the first group (with 13 subjects), we swapped the t1 

and t2 ventricular RAVENS maps so that t2 maps ended up having smaller values to those for the 

corresponding t1 maps, for this group. Thus, the first group displayed no atrophy. The functional deficit 

FV of this group was set as 0. Another example is the 6th group (with 5 subjects), where we only swapped 

the left lateral t1 and t2 ventricular RAVENS maps and kept the right lateral ventricles unchanged. The 

resulting group of data displayed right-sided cerebral atrophy. We set the functional deficit FV of this 

group as 1. 

(4) From the statistics listed in the seventh and eighth columns in Table 1, we actually designed a special 

simulated data set in which both lateral ventricles have strong associations with the functional deficit. 

Essentially, when both lateral ventricles have atrophy, i.e. pattern P11, the functional deficit is very 

possible, i.e. p(FV=1 | P11) = 88.89%, although one-side ventricular atrophy has weak association with 

functional deficits, i.e. p(FV=1 | P10) = 38.46% and p(FV=1 | P01) = 20.83%. However, when only lateral 

ventricle data are examined, there is no linear association between right lateral ventricular atrophy and the 

functional deficit, i.e. p(FV=1 | R=1) = 0.5 and p(FV=1 | R=0) = 0.5; whereas the left lateral ventricular 

atrophy has a linear association with the functional deficit.  

 

Subsequently, we obtained 84 binary maps after the subtraction (we used t2−t1 here, in contrast to the 

experiment in last section) and binarization steps in Fig.1. According to the FV setting in Table 1, we have 42 

normal subject (without atrophy) and 42 abnormal subjects (with atrophy). The functional deficit of these atrophic 

subjects arises under specific combinations of bilateral atrophy. The average binary map for these 84 subjects is 

shown in Fig.9 (a).  

 

B. Results 
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We applied BT, BC, and TT to these data. Via the design of this experiment, we knew that both lateral 

ventricles are associated with the functional deficit. However, the right lateral ventricle is not linearly associated 

with FV. Hence a standard linear statistical test tool, e.g. TT, can hardly detect the right lateral ventricular atrophy, 

although it was expected to find the left lateral ventricular atrophy. Fig.9 (b) shows the result of the TT method, 

where only the left lateral ventricle shows up on the thresholded p-map (with the threshold p-value = 0.05). In 

contrast, in our BMA results in Fig.9 (c) and (d) (with parameters pBT=0.8 and rL=3), both BT and BC detect the 

morphology-function associations of both lateral ventricles. These results confirm our expectation that BT and BC 

can detect nonlinear morphology-function associations.  

In BC result shown in Fig.9 (d), the left lateral ventricle does not appear as bright as that of the BT result in 

Fig.9 (c). This is because of the imperfect convergence of the Monte Carlo iteration in BC. Despite this point, the 

results of BT and BC accord well with each other. 

 

Fig.9 Detection results of TT, BT, and BC versus the average binary map for the nonlinear morphology-function 

associations. The red and white regions correspond to two clusters of associations found by BT and BC methods. 

The result of TT is painted as red because it corresponds the red region in results of BT and BC. 

 

6. Discussion 

 

The proposed BMA methods are generally applicable to many similar problems, besides detection of 

morphology-function associations. This advantage makes BMA a potentially powerful tool in discovering 

interesting morphological characteristics that are associated with non-image categorical or discretized variables. 

Although we only present the experiments on binary variables, BMA can also analyze multi-valued discrete 

variables. Further, in case there are two or more FVs, our BMA method would return a large Bayesian network, in 

which a subnetwork is generated for each FV.  

In most applications the number of RV classes is less than 10, for example in Section 4 we obtained 1 RV and 
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in Section 5 we obtained 2 major RVs; the largest number of RV classes we have ever obtained is 8 in other 

experiments [29]. With this result in mind, regarding the algorithm in Fig.3, we observed that when there are fewer 

than 10 RVs, the computational complexity of the heuristic search of network structures is approximately linear in 

the total number of voxels in the reported experiments. Therefore, BMA methods may be scalable to millions of 

voxels, although BC is slow due to its reliance on the Monte Carlo algorithm. However, in our experiments 

regarding detection of atrophy-function associations, we found that BC often converges rapidly, usually within 20 

iterations.  

In our experimental design, only binary variables were considered. This setting offers the advantage that 

voxel variables have clear meaning of their values, i.e. 1 for volume contraction and 0 for non-contraction. 

However, it is possible to use 3 states for each voxel variable, i.e. 2 for volume contraction, 1 for volume 

expansion, and 0 for no change. The latter setting is useful to detect more general brain morphological changes, 

besides the atrophy. Nonetheless for the purpose of atrophy detection, the binary variables are sufficient, and avoid 

confusion in explaining experimental results. 

For the data in Section 4, in which we used a 9mm diameter Gaussian smoothing kernel, the intensity 

difference between smoothed t1 and t2 voxels was very small, typically within the range [-10,10]. Hence, the naïve 

binarization threshold 0 appeared to be necessary, because a threshold larger than 0 would have caused too much 

signal loss and thus very low TPR. One solution would be to increase the contrast of the comparison maps. For 

example, we could voxel-wise divide the t2 image by the t1 image; this operation would produce ratio maps with 

much higher contrast than difference maps. However in the case we were successful with the difference maps, it 

appears unnecessary to enlarge the computation load by using ratio maps, although higher contrast (e. g., from 

clustering methods based on the Expectation Maximization algorithm) would allow us to manually or 

automatically choose a better binarization threshold to maximize theoretical SNR and/or SDR. Furthermore, in 

those cases for which we have better ground truth, we can calculate the best SNR and/or SDR for many different 

Gaussian kernel diameters to find the optimal kernel.  

We plan the following major areas of further development: 

• Spatial information: when spatial information is integrated into the algorithm, some noisy VVs can be 
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removed. For example, an isolated bright point on the average binary map is usually meaningless. 

Therefore, it is reasonable to eliminate such voxels using neighborhood filtering, or probability 

distributions over the spatial distribution of regions associated with functional variables. 

• Number of cases: Although we omit the derivation here, analytically the number of cases will play an 

important role in improving both SDR and SNR (i. e., increasing TPR and decreasing FPR).  

• Different metric and model selection heuristics: Although we employ the Bayesian metric in eqn.(5) and 

propose the heuristic method in Fig.3, the proposed BMA paradigm itself is independent of particular 

Bayesian network metrics and heuristic model selection methods. We plan to investigate several others 

approaches described in the Bayesian network learning literature [19, 22-23, 38, 6]. 

The main limitation of the BMA approach is that variables are required to be discrete. Fortunately, in many 

applications the data can be discretized. Also, it is possible to extend our work to continuous (e.g. Gaussian) 

variables (for a review of continuous-variable Bayesian network, see [36]).  

 

7. Conclusion 

 

In this paper we have described a framework for morphology-function analysis, based on a Bayesian-network 

model of relationships among image and functional variables. The algorithms based on this framework generate 

sets of voxels whose members have similar probabilistic associations with the functional variable(s). Two methods 

implemented within this framework, Bayesian thresholding and Bayesian clustering, are examples of how this 

framework can be used to generate equivalent-voxel sets. The Bayesian thresholding method is simpler and faster, 

however it requires a predefined threshold for determining whether two voxels have similar conditional 

probability distributions given the functional variable. The Bayesian clustering method utilizes a latent-variable 

Bayesian-network model, and the Monte-Carlo algorithm, to generate equivalent-voxel sets. Bayesian clustering 

takes longer time than Bayesian thresholding, however the former does not require a user-defined threshold, which 

is the principal limitation of the latter.  
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We compared these Bayesian methods to the standard statistical tests (i.e. t-test and paired t-test) for both 

linear and nonlinear morphology-function-detection problems. Our methods succeeded in both cases, whereas the 

paired t-test detected the atrophy region for the linear-association problem, and the t-test failed to detect nonlinear 

associations. It is possible to extend our framework to effectively detect other morphology-function associations 

between image and categorical variables. 

 

Acknowledgement 

 

This work was supported by The Human Brain Project, National Institutes of Health grant R01 AG13743, 

which is funded by the National Institute of Aging, the National Institute of Mental Health, the National 

Aeronautics and Space Administration, and the National Cancer Institute. Dr. Herskovits was also supported by a 

Richard S. Ross Clinician Scientist Award. We thank David Chickering for assistance with latent-variable 

Bayesian clustering methods. 

 

References  

 

[1] Ashburner, J. and Friston, K.J., "Voxel-based morphometry: the methods," NeuroImage, vol.11, pp.805-821, 2000. 

[2] Bookstein, F.L., "Principal warps: thin-plate splines and the decomposition of deformations," IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol.11, pp.567-585, 1989. 

[3] Bouckaert, R.R., "Probabilistic network construction using the minimum description length principle," Technical Report, 

RUU-CS-94-27, Dept of Computer Science, Utrecht University, 1994. 

[4] Cheeseman, P., and Stutz, J., "Bayesian classification (Autoclass): theory and results," In Fayyad, U., Piatesky-Shapiro, 

G., Smyth, P., & Uthurusamy, R. (Eds.), Advances In Knowledge Discovery And Data Mining, pp.153-180. Menlo Park, 

CA: AAAI Press, 1995. 

[5] Chib, S., "Marginal likelihood from the Gibbs output," Journal of the American Statistical Association, vol.90, 

pp.1313-1321, 1995. 



30 

 

[6] Chickering, D.M., and Heckerman, D., "Efficient approximations for the marginal likelihood of Bayesian networks with 

hidden variables," Machine Learning, vol.29, pp.181-212, 1997. 

[7] Clogg, C., "Latent class models," In Arminger, G., Clogg, C., & Sobel, M. (Eds.), Handbook Of Statistical Modeling For 

The Social And Behavioral Sciences. Plenum Press, New York., 1995. 

[8] Cooper, G., and Herskovits, E., "A Bayesian method for the induction of probabilistic networks from data," Machine 

Learning, vol.9, pp.309-347, 1992. 

[9] Davatzikos, C, "Spatial transformation and registration of brain images using deformable models," Computer Vision and 

Image Understanding, vol.66, no.2, pp.207-222, 1997. 

[10] Davatzikos, C., "Mapping of image data to stereotaxic spaces: applications to brain mapping," Human Brain Mapping, 

vol.6, pp.334-338, 1998. 

[11] Davatzikos, C., "Spatial normalization of 3D brain images using deformable models," Journal of Computer Assisted 

Tomography, vol.20, no.4, pp.656-665, 1996. 

[12] Davatzikos, C., Genc, A., Xu, D.R., and Resnick, R.M., "Voxel-based morphometry using RAVENS maps: methods and 

validation using simulated longitudinal atrophy," NeuroImage, vol.14, pp.1361-1369, 2001. 

[13] Davatzikos, C., Vaillant, M., Resnick, S., Prince, J.L., Letovsky, S., and Bryan, R.N., "A computerized method for 

morphological analysis of the corpus callosum", Journal of Computer Assisted Tomography, vol. 20, pp. 88-97, Jan./Feb. 

1996. 

[14] Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.B., Heather, J.D., and Frackowiak, R.S.J., "Spatial registration and 

normalization of images," Human Brain Mapping, vol.2, pp.165-189, 1995. 

[15] Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith C.D., and Frackowiak, R.S.J., "Statistical parametric maps in 

functional imaging: a general linear approach", Human Brain Mapping, vol.2, pp.189-210, 1995. 

[16] Gaser, C., Volz, H.P., Kiebel, S., Riehemann, S., and Sauer, H., "Detecting structural changes in whole brain based on 

nonlinear deformations-application to schizophrenia research," NeuroImage, vol.10, pp.107-113, 1999. 

[17] Gee, J.C., Reivich, M., and Bajcsy, R., "Elastically Deforming 3D Atlas to Match Anatomical Brain Images", Journal of 

Computer Assisted Tomography, vol.17, pp.225-236, 1993. 

[18] Geman, S., and Geman, D. "Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images," IEEE 

Transactions on Pattern Analysis And Machine Intelligence, vol.6, pp.721-742, 1984. 

[19] Glymour, C., and Cooper, G.F., (ed.), Computation, Causation, and Discovery, AAAI/MIT Press, 1999. 



31 

 

[20] Goetz, C.G., and Pappert E.J., Textbook Of Clinical Neurology, (1st Ed.), W.B. Saunders Company, 1999. 

[21] Goldszal, A.F., Davatzikos, C., Pham, D.L., Yan, X.H., Bryan, R.N., and Resnick, S.M, "An image processing system for 

qualitative and quantitative volumetric analysis of brain images," Journal of Computer Assisted Tomography, vol.22, 

no.5, pp.827-837, 1998. 

[22] Heckerman D, "Bayesian Networks For Data Mining," Data Mining and Knowledge Discovery, vol.1, no.1, pp.79-119, 

1997.  

[23] Heckerman, D., Geiger, D., and Chickering, D., "Learning Bayesian networks: the combination of knowledge and 

statistical data," Machine Learning, vol.20, pp.197-243, 1995. 

[24] Herskovits, E.H., "Computer-based probabilistic-network construction," Doctoral Dissertation, Medical Informatics, 

Stanford University, 1991. 

[25] Jensen, F.V., An Introduction To Bayesian Networks, Springer Press, 1996 

[26] McIntosh, AR, Bookstein, FL, Haxby, JV & Grady, CL, (1996). Spatial pattern analysis of functional brain images using 

partial least squares. NeuroImage, vol.3, 143-157. 

[27] Metz, C.E. "Basic principles of ROC analysis," Seminars In Nuclear Medicine, vol.8, pp.283-98, 1978 

[28] Metz, C.E., "ROC methodology in radiologic imaging," Investigative Radiology, vol.21, pp.720-733, 1986. 

[29] Peng, H.C., and Long, F.H., "A Bayesian learning algorithm of discrete variables for automatically mining irregular 

features of pattern images," the Second International Workshop on Multimedia Data Mining (MDM/KDD’2001) in 

conjunction with ACM SIG/KDD2001, San Francisco, USA, Aug, 2001. 

[30] Raftery, A., Hypothesis Testing and Model Selection, Chap.10, Chapman and Hall, 1996. 

[31] Spiegelhalter, D., Dawid, A., Lauritzen, S., and Cowell, R., "Bayesian analysis in expert systems," Statistical Science, 

vol.8, pp.219-282, 1993. 

[32] Thompson, P.M., and Toga, A.W., "A surface-based technique for warping three-dimensional images of the brain," IEEE 

Transactions on Medical Imaging, vol.15, pp.402-417, 1996. 

[33] Thompson, P.M., and Toga, A.W., "Detection, visualization and animation of abnormal anatomic structure with a 

deformable probabilistic brain atlas based on random vector field transformations," Medical Image Analysis, vol.1, no.4, 

pp.271-294, 1997.  

[34] Thompson, P.M., MacDonald, D., Mega, M.S., Holmes, C.J., Evans, A.C., and Toga, A.W., "Detection and mapping of 

abnormal brain structure with a probabilistic atlas of cortical surfaces," Journal of Computer Assisted Tomography, 



32 

 

vol.21, pp.567-581, 1997. 

[35] Woermann, F.G., Free, S.L., Koepp, M.J., Ashburner, J., and Duncan, J.S., "Voxel-by-voxel comparison of automatically 

segmented cerebral gray matter − a rater-independent comparison of structural MRI in patients with epilepsy," 

NeuroImage, vol.10, pp.373-384, 1999. 

[36] Roweis, S., and Ghahramani, Z., "A unifying review of linear Gaussian models," Neural Computation, vol.11, no.2, 

pp.305-345, 1999. 

[37] Shen, D.G., Herskovits, E.H., and Davatzikos, "An adaptive-focus statistical shape model for segmentation and shape 

modeling of 3D brain images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, no.4, 

pp.257-270, 2001. 

[38] Buntine, W, "A guide to the literature on learning probabilistic networks from data," IEEE Transactions on Knowledge 

And Data Engineering, vol.8, no.2, pp.195-210, 1996. 

[39] Blalock, H., Causal Inferences in Nonexperimental Research, Chapel Hill, NC: UNC Press, 1961. 



33 

 

���������	�
��
������������������

 

Hanchuan Peng *, Edward Herskovits, and Christos Davatzikos 

 

Center for Biomedical Image Computing,  

Department of Radiology, School of Medicine, Johns Hopkins University, 

601 N Caroline St, JHOC 3230, Baltimore, MD, 21287, USA.  

Email: phc@cbmv.jhu.edu, ehh@braid.rad.jhu.edu, hristos@rad.jhu.edu  

List of Figures 

 

Fig.1 Three major image preprocessing steps, i.e. registration, subtraction and thresholding (binarization) 

Fig.2 The general Bayesian-network structure for representing morphology-function associations 

Fig.3 Flowchart of the algorithm for RV-set generation 

Fig.4 Alternative structure-function Bayesian-network models 

Fig.5 The general Bayesian-network structure for the BT method 

Fig.6 The latent-variable Bayesian-network structure for the BC method 

Fig.7 Detection results of PT, BT, and BC versus the input data for the linear morphology-function associations. 

(a)(b) Intensity plots of the average binary maps at the labeled two gyri, where atrophy is applied. Pixel 

intensity is proportional to the summation of binary maps, where 1 stands for volume loss and 0 for no volume 

loss. (c) The ground truth for the STG. The colored region is the smoothed Ra, which is overlaid on a subject’s 

image (gray) for better visualization. (d)(e)(f) Detection results for the three methods evaluated. 

Fig.8 ROC curves of the three methods  

Fig.9 Detection results of TT, BT, and BC versus the average binary map for the nonlinear morphology-function 

associations 



34 

 

Figures 
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Fig.2 The general Bayesian-network structure for representing morphology-function associations 
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Fig.3 Flowchart of the algorithm for RV-set generation 
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Fig.4 Alternative structure-function Bayesian-network models 

 

 

 

 

Fig.5 The general Bayesian-network structure for the BT method 

 

 

 

 

 

 

Fig.6 The latent-variable Bayesian-network structure for the BC method 
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(a) Intensity plot at the PCG atrophy location (b) Intensity plot at the STG atrophy location 

  

(c) Ra overlaid on a normal subject’s image (d) PT result 

(e) BT result (f) BC result 
Fig.7 Detection results of PT, BT, and BC versus the input data for the linear morphology-function associations. (a)(b) 

Intensity plots of the average binary maps at the labeled two gyri, where atrophy is applied. Pixel intensity is proportional to 

the summation of binary maps, where 1 stands for volume loss and 0 for no volume loss. (c) The ground truth for the STG. The 

colored region is the smoothed Ra, which is overlaid on a subject’s image (gray) for better visualization. (d)(e)(f) Detection 

results for the three methods evaluated.  
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(a) ROC curve (non-smoothed Ra) for all parameters (b) ROC curve (non-smoothed Ra) for meaningful parameters 

  

(c) ROC curve (smoothed Ra) for all parameters (d) ROC curve (smoothed Ra) for meaningful parameters 

 

Fig.8 ROC curves of the three methods  
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(a) Average binary ventricle of the 84 subjects 

(axial view from below) 

(b) TT (pTT=0.05) (axial view from below) 

  

(c) BT (pBT=0.8) (axial view from below) (d) BC (rL=3, loop=50) (axial view from below) 

 

Fig.9 Detection results of TT, BT, and BC versus the average binary map for the nonlinear morphology-function 

associations. The red and white regions correspond to two clusters of associations found by BT and BC methods. 

The result of TT is painted as red because it corresponds the red region in results of BT and BC. 


